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Abstract—Obtaining real-world data for robotics tasks is
harder than for other modalities such as vision and text. The
data that is currently available for robot learning is mostly set
in static scenes, and deals with a single robot only. Dealing with
multiple robots comes with additional difficulties compared to
single robot settings: the motion planning for multiple agents
needs to take into account the movement of the other robots, and
task planning needs to consider which robot a task is assigned
to in addition to when a task should be done.

In this work, we present TAPAS, a simulated dataset con-
taining task and motion plans for multiple robots acting asyn-
chronously in the same workspace and modifying the same en-
vironment. We consider prehensile manipulation in this dataset,
and focus on various pick-and-place tasks. We demonstrate that
training using this data for predicting makespan of a task
sequence enables speeding up finding low makespan sequences
by ranking sequences before computing the full motion plan.

Code and datasets are open source and available on the project
website, where videos of plans can be found as well.

I. INTRODUCTION

Adoption of robotics is crucial in the coming decades to
tackle labor shortages and to do dangerous and repetitive jobs
that humans currently do. However, to be economically viable,
robots need to be able to do tasks at speeds comparable to
humans, adaptability needs to be better, and they must be
reliable.

To achieve the speeds at which humans do tasks, multi-agent
systems are required, as single robot arms can currently not
match the throughput of human workers. Multi-agent systems
come with additional challenges that do not have to be solved
in single robot settings, such as increased motion planning
difficulties due to other robots moving in the same workspace,
or having to deal with inter-robot dependencies of a plan.
Further, one needs to decide which tasks are assigned to
which robot, and in which order tasks need to be done. This
assignment influences both the feasibility of a plan, and the
speed at which it can be executed.

Learning-based approaches enable flexibility and resilience
for robots, but most learning-based approaches at the moment
are only applicable to single-agent systems. While some ap-
proaches might be able to readily handle multiple robots, most
datasets [12, 21, 5] that are currently available focus on single
agent settings with static environments. This is fine for some
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tasks, e.g., last-inch manipulation [15], where one can assume
that we do not necessarily need to take interactions between
robots into account. However, for other problems, such as
motion planning, tracking a reference path, or assigning and
sequencing tasks, the interaction between robots is crucial and
can not be neglected. This highlights the need for access to
data containing long-horizon plans for multiple agents, ideally
performing a wide variety of tasks.

Following recent work in leveraging simulated data for
learning, we build upon previous work in task and motion
planning, and present TAPAS: a dataset for Task Assignment
and Planning for multi Agent Systems. TAPAS contains both
task plans and motion plans for a multi-robot setup with
various robots, setups, scenes, and objects. We focus on
prehensile manipulation, i.e., pick and place tasks as they are
present in, e.g., logistics, machine tending, or kitting tasks.

TAPAS contains 4 structured base scenes of different dif-
ficulties with up to 4 robots. From these base scenes, we
generate 7’000 randomized instances of these scenes with
different robot arrangements and start and goal poses for
the objects, and solve the task and motion planning problem
using different robot-task assignments, and orders, resulting in
204’000 task plans and the corresponding motion plans.

We show a demonstration that makes use of this dataset by
learning to predict makespan for a given candidate sequence,
using this prediction to order the evaluation of sequences, and
compare the learned policy with a random search policy.

II. RELATED WORK

Task and motion planning (TAMP) relies on solving both
the task planning problem and the motion planning problem
jointly to figure out what to do and how to do it. A compre-
hensive overview and taxonomy of various TAMP approaches
is given in [6]. We focus here on multiagent planning, and
learning for TAMP.

A. Learning in Task and Motion Planning

There are a variety of use cases for learning in TAMP: a
common use-case is speeding up traditional TAMP pipelines
through learning by, e.g., learning likely priors for the sub-
problems [13], through prediction of plan feasibility [20, 29],
or by employing learned solvers for subproblems such as
motion planning [9], or for predicting grasp locations by more
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Fig. 1: Multi agent TAMP overview: First, the multi-agent assignment is serialized into a sequence. This sequence is then used
for prioritized planning, which then results in a plan for all robots.

efficiently sampling constraint manifolds [14]. Learning was
also previously used to enable skills that are then used in task
and motion planners [28, 8].

Other, more recent approaches focus on learning the whole
task and motion planer, e.g., using compositional models for
TAMP, and chaining those together to achieve long-horizon
planning capabilities [1, 18]. This can be done with data from
play [26] without structure, or using expert demonstrations
[16].

Finally, large language models have been used for TAMP as
well, mostly for the high-level planning in multi-agent systems
[17] leveraging the strong priors from language.

Contrary to what we present here, most work focused on
single-agent settings. The dataset we present is a first step
in the direction of learning for multi-agent task and motion
planning, and we demonstrate a possible use-case in learning
a policy to speed up the search for a good task assignment
and sequence for a multi-arm scenario.

B. Multi agent task and motion planning

Most research in TAMP focuses on the single-agent use
case. A simple way to extend the existing research is to treat
all robots as a single one, and to plan in their combined
joint space. This approach implicitly assumes synchronicity
of all agents, and does not scale to many robots, as both
task planning and motion planning in this combined space
get exponentially harder. The assumption of synchronicity
is common [22, 25, 17], but limiting, as it introduces the
requirement of all robots starting and finishing at the same
time, thereby slowing all robots down if the duration of the
tasks differs even slightly from each other. In case many robots
work in the same workspace, as one robot doing a task might
block many other robots from fulfilling their tasks, thereby
making them wait until the next possible timestep to fulfill
their task.

Some other research relies on prioritized planning [11] or
constraint solvers to assign tasks [2]. While these approaches
are scalable, they are suboptimal, as they rely on prioritization,
or compute suboptimal plans due to the nonconvexity of the
problem setting. Additionally, these methods are currently too
slow to deploy in the real world, and require perfect state
estimation.

III. MULTI AGENT TAMP

We consider prehensile manipulation of the objects in the
scene, and allow the actions pick, place, and handover.
We allow repeated handling of objects, leading to, e.g., one
robot picking up an object and moving it into reach of another
robot.

Our approach builds on the the work presented in [10], with
various developments to speed up the planner. We briefly recap
the most important parts here, and an overview is shown in
Fig. 1:

1) The planner first generates a candidate assignment by
assigning primitives to robots. A primitive is a combi-
nation of actions possibly involving multiple robots (e.g.
the sequence pick, handover, place) that brings
an object from its current location to the goal.

2) To then compute a plan, we serialize the plan into a fully
ordered sequence that we obtain by introducing prece-
dence constraints on the end times of the primitives.

3) Given this sequence, we do prioritized planning with the
priority given by the order in the sequence, where we
assume that the previously planned trajectories are fixed,
and need to be respected by the following plans.

We describe the steps in more detail in the following
sections.

A. Search over assignments

To enable searching over (all valid) possible sequences and
assignments, we serialize an assignment into a vector, and
treat the ordering as a precedence constraint (Fig. 1, left). This
allows us to enumerate all possible plans, leading us to find
the best one given the suboptimal prioritized planning.

In practice, we randomly generate a possible sequence by
sampling an object at random, checking which primitives are
valid for which robots, and sampling uniformly from the set
of valid primitive/robot combinations.

B. Prioritized planning

For a given primitive, we can compute feasible poses for
each of the actions, i.e., poses how to grasp, handover, and
place an object for the robots that are involved. We then
use ST-RRT* [7] to plan motions for each of the actions
that are part of a primitive, i.e., we plan from the previous
pose of a robot to the location that corresponds to the



(a) Random scenario with three
arms

(b) Two-Arm-Husky

(c) Shelf (d) Conveyor

Fig. 2: The scenes we consider.

pick/handover/place pose. When planning the motions using
ST-RRT*, we respect the precedence constraints that are
encoded in the sequence. In addition, we plan an exit path,
i.e., a path that ends at the home-pose of a robot, which is
removed once we plan the next primitive1.

After path planning, we post-process the path by shortcut-
ting it, and smoothing it to obtain smooth velocity profiles.

IV. DATA GENERATION

We consider multi-object rearrangement tasks where each
object can be moved by a single robot (i.e. it is not too
heavy), but might be out of reach of some robots, or require
collaboration for reorientation.

A. Scenarios

We consider 4 different base scenarios (random, husky,
shelf, conveyor), in which we randomize the number of robots,
the number of objects, their size, and their start and goal
locations. In the random scenario, we additionally randomize
the robots base positions and orientations. We use the UR5
robot with a vacuum gripper in all the scenarios except for
the shelf, where a two-finger gripper is used.

The scenarios are shown in Fig. 2, and Table I and Figs. 3
and 4 give an overview of the contents of the dataset and how
the plans are distributed with respect to the environments, and
number of objects. A comprehensive overview of the contents
and features of the dataset can be found in Appendices A
and B.

1This exit path makes the planner complete, as the existence of the path
to the pose that does not block any other robot ensures that there is always a
valid path for subsequently planned primitives.

TABLE I: Contents of the dataset.

Scenario #Arms #Objects ≈ #Scenarios ≈ #Plans
Husky 2 1-4 2k 40k
Conveyor 4 1-4 2k 58k
Random 1-4 1-4 2k 100k
Shelf 2 1-4 1k 6k
Total 7k 204k
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Fig. 3: Number of plans for each of the scenarios and number
of objects.

B. Data collection

1) Scenario generation: We sample positions and sizes for
each of the scenarios differently, corresponding to different
tasks, and different difficulties in each of the settings:

• Random: The base positions of the robots are sampled
using Poisson Disk Sampling with a disk radius smaller
than that arm reach to ensure that handovers among robot
arms are feasible. The start and goal positions of the
objects are randomly sampled.

• Husky: Start positions and goal positions are randomly
sampled.

• Shelf: Random poses of the objects, starts on the shelf,
goals on the table.

• Conveyor: Start poses in the middle, goal poses outside.
For all sampled objects, the starting and goal poses are
guaranteed to be within the reachable workspace of at least
one arm.
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Fig. 4: Makespan of the plans for the different scenarios.



In total, we randomly generate approximately 7’000 dif-
ferent instances of the base scenarios. For each of them, we
produce multiple task and motion plans that differ by task
assignment, and task order, amounting to roughly 204’000
trajectories2.

2) TAMP solving: We use the approach introduced in
Section III and run it for a maximum of 120 seconds3 to
generate possible candidate assignments and sequences, and
solve them to compute a valid plan. Since most assignments
and sequences are suboptimal, most trajectories contained in
the dataset are suboptimal. However, these can be used to,
e.g., predict makespan for a given sequence, or to learn motion
planning policies.

Further, we want to emphasize that the data generation
process is not deterministic, as we use ST-RRT* for path
planning and do not run it until convergence, as this would
be too slow. As such, the makespan of a sequence should be
regarded as noisy labels. In practice, this is not a problem,
as more randomness will be injected by the non-deterministic
execution of the plan, e.g., when trying to pick up an object
inaccurately, and having to retry.

V. EXPERIMENTS

We demonstrate a possible use-case of the dataset by
speeding up sequencing and task assignment for multi-agent
TAMP through learning.

A. Learning to predict makespan of task sequences

In this setting, we focus on the scenario with random robot
and random object placements, and only use the data from
this scenario. While we could learn from all data and leverage
the possibility of transfer learning, in this initial work, we
wanted to avoid the difficulties that arise for representation of
the scene [23] that would be required.

In order to speed up the search for a good candidate
sequence, we want to decrease the time that we spend on
evaluating suboptimal sequences. We focus on learning to
predict the makespan for a candidate sequence, and using
this prediction to inform the search, i.e., rank the candidate
sequences according to the prediction. This approach of pre-
dicting a score (the makespan) and ranking them is a pointwise
ranking [4].

Compared to predicting a sequence directly, predicting the
makespan for a candidate sequence has the advantage of being
able to leverage optimizers to determine the feasibility of a
primitive, to, e.g., filter out task assignments where a robot
can not reach an object. This computation is quick compared
to the complete planning of a sequence.

1) Policy training: Our policy is conditioned on the start
state of the scene and the candidate sequence. To handle
a variable number of robots and objects in a scene, we
tokenize the task assignment into tokens that are defined as

2Since the keyframe-generation for the two-finger gripper takes longer than
for the vacuum gripper, the shelf-scenario has fewer plans computed than the
other scenarios in the same time.

3Early stopping is possible if all sequences were tested.
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Fig. 5: Evolution of the best obtained makespan with compute
time. We show the mean makespan and its min-max range over
10 runs.

the concatenation of an action id, a robot id, the pose of the
robot’s base, the object id, and the object’s initial and final
poses. Token embeddings are obtained by learning a linear
layer that maps the original tokens to an embedding dimension
of 128, similar to the one used in [3]. Such embeddings are fed
into a standard transformer encoder [27], which is then used
as a backbone for a multi-layer perceptron head that outputs
a predicted makespan.

Additional details about the policy training can be found in
Appendix C.

2) Inference: We generate 100 possible sequences through
random sampling, and rank them using the learned policy. We
then evaluate them in the order of the ranking, until the planner
times out (in case there is a computation time limit).

VI. RESULTS

We compare the approach introduced in the previous section
to a basic random search. We evaluate these policies on the
scenario with randomly sampled robot locations on 2, 3, and
on 4 robots, with different number of objects. The instances of
the scenes we evaluate here are not part of the training dataset.

The best found makespan over time is shown in Fig. 5. It is
clearly visible that the learned policy outperforms the random
search. While the learned policy is not always perfectly
predicting the best makespan, the ranking of the sequences
is good enough to obtain a much better anytime behaviour
than the baseline approach.

VII. DISCUSSION

The results on using this data to learn a policy that predicts
the makespan for a given sequence in order to speed up the
search for a low makespan multi agent task and motion plan
show a possible use-case for TAPAS. While we learned a
makespan predictor here, there are many other possible uses



for the data presented in this work, such as learning to predict
a sequence directly, or to learn a policy for multi agent motion
planning.

We briefly discuss the question of what should we learn
from simulated data, and what role will it play in training
robot policies in the future.

A. Learning from simulation data

We believe that simulated data will play an important role
in learning systems in the future. While it is feasible, and
recommendable to learn, e.g., manipulation from expert data,
such expert data is not available from human operators for
many multi-agent systems. This is partially due to unintuitive
plans in many cases, and in a much higher dimensional space
than the one we as humans are in. While reinforcement
learning approaches can overcome this problem, even for
reinforcement learning approaches, it is useful to initialize a
policy with, e.g., a behaviour cloning policy from suboptimal
data.

When computing a solution to a path planning problem, very
often many suboptimal plans are evaluated before converging
to the optimal plan. We believe that a learner will be more
sample efficient if learning from all (even suboptimal) data is
facilitated. One possibility is the approach we presented here
in this work, namely learning to predict cost of all solutions.

VIII. CONCLUSION

We presented a dataset containing 4 different scene cate-
gories with different levels of difficulty for task and motion
planning encompassing 7K scenarios and more than 204k
trajectories.

Compared to most multi-agent settings, we present plans
that do not assume synchronization of the robot’s actions,
thereby enabling higher throughput. We demonstrated a simple
use case of the data to learn to predict makespan, and showed
how this policy can improve the search over possible candidate
sequences.

In the future, we want to extend this dataset with more (and
more realistic, see, e.g., [19]) scenes, and more primitives.
Further, adding real-world data which is non-deterministic due
to uncertainties in state estimation and execution uncertainty of
policies could be interesting. On the learning side, promising
future work is using this dataset to investigate sequence pre-
diction further (with, e.g., mean variance estimation networks
[24]), and explore learning of motion planning.
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APPENDIX

A. Scenes

We show the initial conditions of some of the randomized
scenes in Fig. 6. This illustrates the range of the object
placements, robot placements, and objects size for the random
scene.

B. Data Features

We export the following data for each of the scenarios:
• the scene description containing the required information

to reconstruct the scene, i.e., robot base pose, the ob-
stacles, their sizes, and the start and end poses of the
objects,

• the sequence that was used to generate the trajectory,
containing the primitives, the robots and the object that
is assigned to a primitive,

• the resulting symbolic plan with the start and end times
for each action,

• and the trajectory, consisting of some metadata, and an
array of steps, with each step containing the joint pose,
the symbolic states, and the end-effector-position.

Additionally, we export a metadata file that contains the
number of robots, the number of objects, the cumulative
computation time, and the makespan.

C. Policy details

The code for the training and inference is available on the
website. Fig. 7 shows the loss curve for different scenarios. We
report the hyperparameters we used for training in Table II.

TABLE II: Training Hyperparameters

Hyperparameter Value
Learning rate 1e-3
Batch size 128
Optimizer RAdam
Learning Rate Scheduler Linear
Epochs 10
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Fig. 7: Training loss for all scenarios.

Fig. 6: Snapshots of the initial conditions for some of the randomized scenes we consider. The opaque object is the start pose
and the transparent object is its goal pose.


	Introduction
	Related work
	Learning in Task and Motion Planning
	Multi agent task and motion planning

	Multi agent TAMP
	Search over assignments
	Prioritized planning

	Data Generation
	Scenarios
	Data collection
	Scenario generation
	TAMP solving


	Experiments
	Learning to predict makespan of task sequences
	Policy training
	Inference


	Results
	Discussion
	Learning from simulation data

	Conclusion
	Appendix
	Scenes
	Data Features
	Policy details


